
Cisco > Inside Cisco IOS Software Architecture > 1. Fundamental IOS Software Architecture > Operating
Systems Basics

See All Titles

Operating Systems Basics

Modern operating systems provide two primary functions: hardware abstraction and resource management.
Hardware abstraction gives software developers a common interface between their application programs
and the computer's hardware so each individual programmer doesn't need to deal with the hardware's
intricacies. Instead, the hardware-specific programming is developed once, in the operating system, and
everyone shares.

The second function that operating systems provide is managing the computer's resources (CPU cycles,
memory, and disk drive space, for example) so they can be shared efficiently among multiple applications.
Like hardware abstraction, building resource management into the operating system keeps each application
programmer from writing resource management code for every program.

CPU Resource Management and Multitasking

Although some operating systems only allow one program to run at a time (most versions of MS-DOS
operate this way, for example), it's more common to find operating systems managing multiple programs
concurrently. Running multiple programs at once is called multitasking and operating systems that support it
are typically called multitasking operating systems.

Computer programs written for multitasking operating systems themselves often contain multiple
independent tasks that run concurrently. These little subprograms are called threads because they form a
single thread of instruction execution within the program. Threads each have their own set of CPU register
values, called a context, but can share the same memory address space with other threads in the same
program. A group of threads that share a common memory space, share a common purpose, and
collectively control a set of operating system resources is called a process. On operating systems and CPUs
that support virtual memory, each process might run in a separate address space that is protected from
other processes.

Because a processor can execute instructions for only one program at a time, the operating system must
manage which set of program instructions (which thread) is allowed to run. Deciding which process should
run is called scheduling and is usually performed by a core piece of the operating system called the kernel.
An operating system can use one of several methods to schedule threads, depending on the type of
applications the operating system has been optimized to support. Different types of applications (batch,
interactive, transactional, real-time, and others) have different CPU utilization characteristics, and their
overall performance is affected by the scheduling method used.

The simplest scheduling method is to assign each thread to the processor in the order its run request is
received and let each thread run to completion. This method is called FIFO (first-in, first-out) run-to-
completion scheduling. FIFO's advantages are: It is easy to implement, it has very low overhead, and it's
"fair"—all threads are treated equally, first come, first served.

FIFO with run-to-completion scheduling is good for batch applications and some transactional applications
that perform serial processing and then exit, but it doesn't work well for interactive or real-time applications.
Interactive applications need relatively fast, short duration access to the CPU so they can return a quick
response to a user or service some external device.

One possible solution for these applications is to assign priorities to each thread. Threads with a critical
need for fast access to the CPU, such as real-time threads, can be assigned a higher priority than other less
critical threads, such as batch. The high priority threads can jump to the head of the line and quickly run on
the CPU. If multiple threads are waiting with the same priority, they are processed in the order in which
they're received (just like basic FIFO). This method is called run-to-completion priority scheduling.

Run-to-completion priority scheduling, though an improvement over FIFO, still has one drawback that makes
it unsuitable for interactive and real-time applications—it's easy for one thread to monopolize the processor.
High priority threads can get stuck behind a long-running, low-priority thread already running on the

< BACK Make Note | Bookmark CONTINUE >

Page 1 of 4

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=13

processor. To solve this problem, a method is needed to temporarily suspend or preempt a running thread
so other threads can access the CPU.

Thread Preemption

Involuntarily suspending one thread to schedule another is called preemption. Scheduling methods that
utilize preemption instead of run to completion are said to be preemptive, and operating systems that
employ these methods are called preemptive multitasking operating systems. Preemption relies on the
kernel to periodically change the currently running thread via a context switch. The trigger for a context
switch can be either a system timer (each thread is assigned a time slice) or a function call to the kernel
itself. When a context switch is triggered, the kernel selects the next thread to run and the preempted thread
is put back in line to run again at its next opportunity based on the scheduling method being used.

NOTE

A context switch occurs when an operating system's kernel removes one thread from the CPU and
places another thread on the CPU. In other words, context switches occur when the computer
changes the task on which it is currently working. Context switches can be quite expensive in terms
of CPU time because all of the processor's registers must be saved for the thread being taken off
the CPU and restored for the thread being put on the CPU. The context is essential for the
preempted thread to know where it left off, and for the thread being run to know where it was the
last time it ran.

There are several advantages to preemptive multitasking, including the following:

It's predictable—

A thread can, within limits, know when it will likely run again. For instance, given the limits of kernel
implementations, a thread can be set up to run once a second and the programmer can be
reasonably certain that the thread will be scheduled to run at that interval.

It's difficult to break—

No single thread can monopolize the CPU for long periods of time. A single thread falling into an
endless loop cannot stop other threads from running.

Of course, there are also disadvantages to preemptive multitasking, such as:

It's less efficient than run-to-completion methods—

In general, preemptive multitasking systems tend to switch contexts more often, which means the
CPU spends more time scheduling threads and switching between them than it does with run to
completion.

It adds complexity to application software—

A thread running on a preemptive system can be interrupted anywhere. Programmers must design
and write their applications to protect critical data structures from being changed by other threads
when preempted.

Memory Resource Management

Operating systems also manage the computer's memory, typically dividing it into various parts for storing
actual computer instructions (code), data variables, and the heap. The heap is a section of memory from
which processes can allocate and free memory dynamically.

Some operating systems provide a means for processes to address more memory than is physically present

Page 2 of 4

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=13

as RAM, a concept called virtual memory. With virtual memory, the computer's memory can be expanded to
include secondary storage, such as a disk drive, in a way that's transparent to the processes. Operating
systems create virtual memory using a hardware feature, available on some processors, called a memory
map unit (MMU). MMU automatically remaps memory address requests to either physical memory (RAM) or
secondary storage (disk) depending on where the contents actually reside. The MMU also allows some
address ranges to be protected (marked read-only) or to be left totally unmapped.

Virtual memory also has another benefit: In operating systems that support it, an MMU can be programmed
to create a separate address space for each process. Each process can have a memory space all to itself
and can be prevented from accessing memory in the address space of other processes.

Although it has many benefits, virtual memory does not come for free. There are resource requirements and
performance penalties—some of them significant—associated with its use. For this reason, as you will see,
IOS does not employ a full virtual memory scheme.

Interrupts

Operating systems usually provide support for CPU interrupts. Interrupts are a hardware feature that cause
the CPU to temporarily suspend its current instruction sequence and to transfer control to a special program.
The special program, called an interrupt handler, performs operations to respond to the event that caused
the interrupt, and then returns the CPU to the original instruction sequence. Interrupts often are generated
by external hardware, such as a media controller requesting attention, but they also can be generated by the
CPU itself. Operating systems support the interrupts by providing a set of interrupt handlers for all possible
interrupt types.

Last updated on 12/5/2001
Inside Cisco IOS Software Architecture, © 2002 Cisco Press

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

addresses
 MMU (memory map unit)
Cisco IOS
 virtual memory
context switches
 preemptive multitasking
contexts (threads)
CPUs
 context switches
 interrupts
 mutlitasking operating systems 2nd
 preemptive multitasking operating systems 2nd
FIFO (first-in, first-out)
 run-to-completion scheduling 2nd
hardware abstraction
heap (memory)
interrupt handler
IOS
 virtual memory
kernel
 preemptive multitasking

Page 3 of 4

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=13

 scheduling threads 2nd
management, resource
 operating systems
 CPU interrupts
 memory 2nd
memory
 operating systems 2nd
memory map unit (MMU)
MMU (memory map unit)
multitasking
multitasking operating systems 2nd
 preempting threads 2nd
 scheduling threads
operating systems
 CPUs
 interrupts
 hardware abstraction
 memory management 2nd
 multitasking 2nd
 scheduling threads
 preemptive multitasking 2nd
 resource management
preempting threads
preemptive multitasking operating systems 2nd
preemting
priority scheduling (threads)
processes 2nd
processors
 context switches
 interrupts
 mutlitasking operating systems 2nd
 preemptive multitasking operating systems 2nd
real-time applications
 thread scheduling
resource management
 operating systems
 CPU interrupts
 memory 2nd
run-to-completion priority scheduling (threads)
run-to-completion scheduling (threads) 2nd
scheduling
scheduling threads 2nd
switches
 context switches
threads 2nd 3rd
 scheduling
timers
 preemptive multitasking
virtual memory 2nd

About Us | Advertise On InformIT | Contact Us | Legal Notice | Privacy Policy
© 2001 Pearson Education, Inc. InformIT Division. All rights reserved. 201 West 103rd Street, Indianapolis, IN 46290

Page 4 of 4

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=13

